Manual Therapy in Children: Proposals for an Etiologic Model

2132

Manual Therapy in Children: Proposals for an Etiologic Model

Heiner Biedermann, M.D.

Surgeon, private practice,
European Workgroup for Manual Medicine,
Koln, Germany


Manual therapy in children (MTC) is receiving greater attention. Several monographs and reviews deal with this subject [1-4]. Although these publications cover the field from the viewpoint of a classic pediatric approach, discussing which diagnoses of pediatric medicine might be successfully treated by MTC, they do not furnish an independent concept for the functional disorders that we see in these children.

This article proposes such a framework through a model: the kinematic imbalances due to suboccipital strain (KISS) concept. This concept groups the symptoms and signs associated with functional disorders of the cervical spine into an entity linked to easily recognizable clinical situations. By using this concept as a term in the communication with other caregivers of infants and children, we may be able to improve the contact between pediatricians and specialists of MTC, thus facilitating the identification of those cases where the use of MTC will be most useful. The definition of a functional disorder that is caused primarily vertebrogenically enables pediatricians, physiotherapists, speech therapists, and others who address infants and schoolchildren to widen their scope of available therapeutic options and to include the “functional approach”5 in their therapeutic considerations.

The emphasis of this article is to present the clinical picture and some background information pertaining to the causes and course of KISS and to present a manipulation technique.


From the Full-Text Article:

Manual therapy in children (MTC) is receiving greater attention. Several monographs and reviews deal with this subject [1, 2, 3, 4]. Although these publications cover the field from the viewpoint of a classic pediatric approach, discussing which diagnoses of pediatric medicine might be successfully treated by MTC, they do not furnish an independent concept for the functional disorders that we see in these children.

This article proposes such a framework through a model: the kinematic imbalances due to suboccipital strain (KISS) concept. This concept groups the symptoms and signs associated with functional disorders of the cervical spine into an entity linked to easily recognizable clinical situations. By using this concept as a term in the communication with other caregivers of infants and children, we may be able to improve the contact between pediatricians and specialists of MTC, thus facilitating the identification of those cases where the use of MTC will be most useful. The definition of a functional disorder that is caused primarily vertebrogenically enables pediatricians, physiotherapists, speech therapists, and others who address infants and schoolchildren to widen their scope of available therapeutic options and to include the “functional approach” [5] in their therapeutic considerations.

The emphasis of this article is to present the clinical picture and some background information pertaining to the causes and course of KISS and to present a manipulation technique.

The Special Situation During the First Year

Newborn infants are different from adults or even older children in many ways. With a brain weight of ±400 g at birth (rapidly increasing to ±1000 g at 1 year), [6] the central nervous system (CNS) of a newborn is small and light. Moreover, its most “human” parts, the prefrontal areas, are not yet myelinated and thus unable to function properly before 2 years of age [7] and develop until the end of the teenage years.

But even myelinization does not automatically implicate complex capabilities, as several crude yet convincing tests indicate. The electroencephalogram of a newborn, if derived from the scalp of an adult would be considered [8] “…sufficiently abnormal to indicate imminent demise.” The metabolic rate at this stage is low. [9] After birth, most of the activities of the newborn are governed by spinal and cerebellar reflexes. These primitive and unconditional reactions are gradually replaced by more complex patterns, parallel to the ripening of the pyramidal tracts and other structures of the suprapontine areas of the CNS. [10, 11]

The differentiation of the fine structures of the CNS depends on and is modified by external stimuli on various levels. These influences commence before birth and are documented on the nutritional [12] and acoustic [13] level. Before birth, mothers report marked differences regarding the movement patterns of their babies and they are able to trace these patterns to distinctive events, that is, special food they ate or activities the mothers are performing at a given moment. [13]

There seems to be a correlation between infants which are “lazy” during pregnancy and those infants which display postural or behavioral problems during the first months. [14] These children show postural stereotypes with a fixed lateral bend of the spine or a preference of hyperextension. In most cases these phenomena seem to be limited to a rather short period. Thus, it is not surprising that these cases are regarded as basically self-limiting and not in need of a specific therapy. Some papers dealing with colic hint a “difference in state regulation and control in infants with colic” [15] and mention functional neurologic disorders [16] in these children, whereas other factors like nutrition or allergies are mostly excluded. [17] We should be aware that the infant’s development, and primarily its acquisition of neuromotor competences, is intimately connected to the optimal functioning of its interface with the external world. The performance of this system depends on a multitude of components, which are beyond our influence. A few of them are accessible to therapy and one of these is the “spinal engine”. [18] At that stage of ontogeny, an important component of this engine is the upper cervical area.

The Biomechanics of the Occipito-Cervical Junction in Newborn

Functional magnetic resonance imaging (MRI) and other tools improved our understanding of the working conditions of the developing CNS in the last decade. Another area where these differences between adults and newborn are important is the development of the suboccipital structures during the first year. These anatomic details can be examined by conventional radiographs that are taken routinely before any treatment of the cervical spine. Our archive of radiographs of newborn and small children (more than 12,000 cases) made it possible to look at some of the data provided by authors who did not have access to our data. [19] One example is the frontal and sagittal angle of the suboccipital joints, that is, the orientation of the condyle-atlas junction (Fig 1, Fig 2, Fig 3).

The Trauma of Birth

Studying the strain exerted on the suboccipital structures during birth, one may be astounded that no lasting injuries are caused. We tend to forget how dangerous these few centimeters are. [20, 21] General anesthesia and modern pharmacology provide us with tools to overcome most of the problems mother and child may face during birth. But one should not forget that the older obstetric literature was filled with gruesome procedures to dismember the fetus in utero if the normal birth had not succeeded.

Before the use of general anesthesia and antiseptics, a cesarean delivery almost inevitably led to the death of the mother and was therefore extremely rare. Today, use and abuse of cesarean deliveries are discussed controversially and in some clinics a third of the births are by cesarean delivery. [22, 23, 24] From our viewpoint as specialists of functional disorders of the vertebral spine, the advantages of a broad indication for a cesarean delivery seem obvious.

In research done in the Netherlands, healthy newborns were examined routinely after birth and a noticeable amount of intracerebral lesions were found.25 In our studies, infants born by cesarean delivery are underrepresented, and even more so if one excludes from this group the breech position, a frequent indication for a cesarean delivery.

A cesarean delivery is no guarantee that the cervical spine was not mechanically strained. Depending on the length of the abdominal incision and the urgency of the operation, the child may have been pulled out forcefully. In most cases the cesarean delivery is at least less demanding on the suboccipital structures than a vaginal delivery.

Phylogenetically, there are 2 main problems regarding the delivery mechanism of the fetus. Firstly, the bipedal gait necessitates a profound alteration of the pelvis. Its function in quadrupeds implies an open and oval construction, connecting the hind member with the vertebral spine at an angle of about 90°; this leaves ample space for the delivery of the fetus. With the upright posture of the trunk the pelvis had to be closed as much as possible to carry the intra-abdominal structures and the ilium had to be bent outward to make room for the gluteal group. These muscles have a different working angle once the trunk sits on top of the hind leg and not in front of it. [18, 26, 27] The birth channel is in direct contradiction to these constructive principles as the fetus has to pass through this now much smaller aperture. This is one of the reasons why the sexual dimorphism of the pelvis is bigger in human beings than in any other group of mammals. [28]

Another constructive problem adds to this dilemma: the acquisition that upright posture as consequence the femuro-spinal angle of roughly 90° has to be enlarged to almost 180° and beyond. This is achieved by redesigning the lumbosacral junction and it leads to the almost angular promontorium [29] that is a uniquely human achievement and another obstacle for the fetus. No other region of the human musculoskeletal system has such a big interindividual variability as the sacrum and its neighboring structures. [30] Obstetricians were among the first to analyze the pelvic architecture and its consequences for things such as low back pain. [31]

The design of the pelvis to adapt it to its role in bipedal posture is one problem aggravating the situation of the fetus on its way into the world. The second aspect is almost as important and is similar to the constructive dilemma at the caudal pole of the vertebral spine.

In quadrupeds the orientation of the skull (visual axis) is approximately an extension of the vertebral axis. The vertical positioning of the trunk makes it necessary to align the visual axis with the horizon. In most animals who assume a vertical position only for a limited period this is achieved by a lordosis of the cervical spine (eg, bears, prairie dogs, etc) [28] and no further adaptation of the cranial structures ensues.

The evolution of human beings took a different path. Here, the realignment of the visual field with the horizon was accomplished by an angulation between the upper cervical spine and the craniofacial region. The result of this complicated development was a wider base for the neocranium and an angle of ±90° between the orientation of the vertebral spine and the visual axis. One of the side effects of this new relationship between head and spine was the change of the birth mechanism; whereas in most mammals the facial part of the skull is delivered first, in human beings the dome of the skull is the initial structure to enter the birth canal. [32]

The main diameter of the head lies in the sagittal plane, that of the trunk in a frontal orientation. The 2 redesigns of the vertebral poles interact to produce a complicated birth mechanism. The construction of the lower pelvis leads to a semicircular trajectory for the fetus. As the main diameters of head and trunk have to be aligned during delivery, a 90° angle between the two is established while traversing the lower pelvis. This leads to a necessarily asymmetrical positioning of the occipito-cervical junction, which cannot be reversed during the entire delivery.

Studies of the intracranial structures of apparently healthy newborns showed a high percentage of signs of microtrauma of brain stem tissues in the periventricular areas. [33] It seems probable that the exposed structures of the occipito-cervical junction suffer at least as much as the cranium. [34] Wischnik et al [35] have shown this in experimental studies of the biomechanics of delivery, as have others. [36] The injury of the intracranial and subcranial structures is thus the rule, not the exception. The ability of most newborns to overcome and repair these lesions shows the enormous capacity of the not yet fully developed brain to cope with trauma at this stage.

The optimal development of the brain, which persists well beyond the 16th year, [10, 37] depends on adequate and consistent sensory input. The importance of proprioceptive unbalances for the efficient repair of cerebral lesions becomes evident.